Phospholipase D1b and D2a generate structurally identical phosphatidic acid species in mammalian cells.

نویسندگان

  • T R Pettitt
  • M McDermott
  • K M Saqib
  • N Shimwell
  • M J Wakelam
چکیده

Mammalian cells contain different phospholipase D enzymes (PLDs) whose distinct physiological roles are poorly understood and whose products have not been characterized. The development of porcine aortic endothelial (PAE) cell lines able to overexpress PLD-1b or -2a under the control of an inducible promoter has enabled us to characterize both the substrate specificity and the phosphatidic acid (PtdOH) product of these enzymes under controlled conditions. Liquid chromatography-MS analysis showed that PLD1b- and PLD2a-transfected PAE cells, as well as COS7 and Rat1 cells, generate similar PtdOH and, in the presence of butan-1-ol, phosphatidylbutanol (PtdBut) profiles, enriched in mono- and di-unsaturated species, in particular 16:0/18:1. Although PtdBut mass increased, the species profile did not change in cells stimulated with ATP or PMA. Overexpression of PLD made little difference to basal or stimulated PtdBut formation, indicating that activity is tightly regulated in vivo and that factors other than just PLD protein levels limit hydrolytic function. In vitro assays using PLD-enriched lysates showed that the enzyme could utilize both phosphatidylcholine and, much less efficiently, phosphatidylethanolamine, with slight selectivity towards mono- and di-unsaturated species. Phosphatidylinositol was not a substrate. Thus PLD1b and PLD2a hydrolyse a structurally similar substrate pool to generate an identical PtdOH product enriched in mono- and di-unsaturated species that we propose to function as the intracellular messenger forms of this lipid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer.

Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G...

متن کامل

Secretory vesicle budding from the trans-Golgi network is mediated by phosphatidic acid levels.

Phospholipid metabolism plays a central role in regulating vesicular traffic in the secretory pathway. In mammalian cells, activation of a Golgi-associated phospholipase D activity by ADP-ribosylation factor results in hydrolysis of phosphatidylcholine to phosphatidic acid (PA). This reaction has been proposed to stimulate nascent secretory vesicle budding from the trans-Golgi network. It is un...

متن کامل

Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells.

Phosphatidylcholine (PC) is a major source of lipid-derived second messenger molecules that function as both intracellular and extracellular signals. PC-specific phospholipase D (PLD) and phosphatidic acid phosphohydrolase (PAP) are two pivotal enzymes in this signaling system, and they act in series to generate the biologically active lipids phosphatidic acid (PA) and diglyceride. The identity...

متن کامل

Epithelial cell motility is triggered by activation of the EGF receptor through phosphatidic acid signaling.

Phospholipase D catalyzes the hydrolysis of phosphatidylcholine to generate phosphatidic acid, and there is currently much interest in elucidating messenger functions for this molecule. We report here that wounding sheets of corneal epithelial and Madin Darby canine kidney cells induces strong activation of phospholipase D, and we provide evidence that activation is amplified through a positive...

متن کامل

Regulation and possible role of mammalian phospholipase D in cellular functions.

Phospholipase D (PLD), an enzyme widely distributed in bacteria, fungi, plants, and animals, catalyzes the hydrolysis of phosphatidylcholine (PC) and other phospholipids to generate phosphatidic acid (PA). PLD activity can lead to the generation of phosphatidylalcohol in the presence of a primary alcohol. This reaction, referred to as transphosphatidylation, is not only a hallmark of PLD activi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 360 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2001